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Abstract

In spite of increasing computing power, many statistical problems give rise to Markov

chain Monte Carlo algorithms that mix too slowly to be useful. Often, the mixing is

due to high posterior correlations between parameters. In the illustrative special case of

Gaussian linear models with known variances, we characterize which functions of parame-

ters mix poorly and demonstrate a practical way of greatly reducing autocorrelations from

the algorithms by adding Gibbs steps in suitable directions. These additional steps, and

their Metropolis analogues, are also very effective in practical problems with nonnormal

posteriors and are particularly easy to implement.
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1 Introduction

Following Gelfand & Smith (1990), MCMC methods have become important and popular,

especially for Bayesian computation. Although the MCMC method will converge in a

very general setting (e.g. Tierney 1994), it is well known that in many applications of

raw MCMC methods, in particular the Gibbs sampler or Metropolis-Hastings sampling,

successive parameter updates tend to be highly correlated, so convergence in MCMC to

the stationary posterior distribution is painfully slow. When the models become more

complicated, it becomes increasingly likely that untuned methods will not mix quickly

enough to be practical.

Many of the issues of convergence of MCMC chains have been discussed in Gilks et al.

(1996). See especially Gilks & Roberts (1996). There are several possible solutions. One

is to run MCMC longer, using tools such as those of Gelman & Rubin (1992) and Gelman

(1996) to monitor convergence. Another method is to use block sampling. See, for example,

Liu et al. (1994) and Roberts & Sahu (1997) or Chib & Carlin (1999). Other proposals

involve reparameterizing, adding parameters, or both. The sweeping method of Vines et al.

(1996) and hierarchical centering of Gelfand et al. (1995) and Gelfand et al. (1996) both

deal with essentially overparameterized linear or linearizable models. An interesting variant

on the latter is the partial centered parameterizations of Papaspiliopoulos et al. (2003). In

contexts where reparameterization appears inadequate, data augmentation and parameter

expansion are sometimes helpful, for example, as in parameter-expanded data augmenta-

tion (Liu & Wu (1999), Meng & van Dyk (1999). Parameters added to a model may reduce

a posteriori correlation and improve mixing. Reparameterization for computatational ef-

ficiency has a long history; Gelman (2004) shows how reparameterization may even add

statistical insight.

In contrast to these approaches, we discuss a strategy for enhancing mixing in standard

MCMC algorithms for standard linearizable models and their natural or customary priors.

The strategy is based on hybrid MCMC algorithms that augment standard cycles with

extra moves in well-chosen directions in the parameter space without adding parameters.

We call these decorrelation steps because they tend to enhance mixing and reduce, some-

times dramatically, the correlation between successive samples from the posterior. The

puspose of this paper is to demonstrate the effectiveness of these hybrid algorithms and
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their ease of implementation. Our main theoretical results pertain to Gaussian posteriors,

where we show that decorrelation steps in some common situations can nearly eliminate

autocorrelation between successive cycles in MCMC chains. Our work is anticipated in the

hybrid sampler of Nobile (1998), who introduced additional scale moves to improve mixing

in certain multinomial problems. Liu & Sabatti (1999) used mixed strategies including

extra sadditive steps as used here, and we rely on the work of Liu & Sabatti (2000) to

verify that decorrelation steps preserve the posterior distribution.

To motivate the discussion, consider one of the simplest possible linear models, one-way

analysis of variance. This example is discussed by virtually every author concerned with

mixing.

Example 1: One-way ANOVA Let

yij = µ + αi + εij, i = 1, . . . ,m; j = 1, . . . , n, (1)

where the εij are independent N(0, δ0), with conventional independent priors µ ∼ N(0, δ1)

and αi
iid∼ N(0, δ2). (To complete a hierarchical specification, conjugate inverse-gamma

priors can be taken on the δi.) In the fixed variance case, this model is known to display

slow convergence under conditions on the relative values of the variances (see, for example,

Gelfand et al. (1995)). The reason seems intuitively clear; the model is poorly specified in

that the cell means µi = µ + αi do not uniquely determine the parameters µ and αi. In

classical linear models, statisticians only perform inference on estimable functions of the

parameters. In the Bayesian setup, with proper priors, the posterior is proper even if it is

relatively noninformative in certain directions, so a statistician may desire to use the model

even though it is poorly identifiable.

One simple solution to the problem of poor mixing is reparameterization. The sweeping

method of Vines et al. (1996) replaces αi by α̃i = αi − ᾱi with corresponding change in

the prior. This strategy corresponds to the standard frequentist method of adding one or

more side conditions to estimate a nonidentifiable model. Sweeping trades simplicity of

structure of the model for efficient mixing of the MCMC algorithm. Vines et al. (1996)

(see also Gilks et al. 1996) show how sweeping can be extended to higher order models. Of

course, in non-Gaussian settings, full conditional distributions after transformation may no

longer have closed form, complicating MCMC algorithms.

Example 2: Hierarchical One-way ANOVA Another popular reparameterization
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is the cell mean model, referred to as hierarchical centering by Gelfand et al. (1995), where

yij = µi + εij, i = 1, . . . ,m; j = 1, . . . , n, (2)

with εij as above but independent µi ∼ N(µ, δ2) with a normal prior on µ and again

conjugate priors on the variance components. Gelfand et al. (1995) showed that if n → ∞,

the posterior correlation of αi and αj in model (1) will go to 1, while that of µi and µj

will go to 0. Consequently, the MCMC chain based on model (2) is much more efficient.

Hierarchical centering works extremely well in the one-way ANOVA model or a nested

higher way ANOVA if the data variance is low (e.g., if m is large enough). When combined

with sweeping, hierarchical centering is perhaps the most popular strategy for efficiently

obtaining posterior quantities using MCMC. In Section 3.4, we show why sweeping must be

added to hierarchical centering in two-way or multi-way ANOVA models, with or without

interactions.

Papaspiliopoulos et al. (2003) have proposed an interesting variant of (2) called a par-

tially noncentered parameterization. While the centered model (2) is effective when the

information from the data outweighs that from the prior, it is poor for the high data

variance case where (1) has better a posteriori correlation. To treat both cases with one

model, Papaspiliopoulos (2003) and Papaspiliopoulos et al. (2003) proposed a continuum

of partially noncentered parameterizations. For the illustrative case of one-way ANOVA,

the model is

yij = wµ + β̃w
i + εij, j = 1, . . . , n, (3)

β̃w
i = (1 − w)µ + zi, i = 1, . . . ,m,

where µ ∼ N(0, δ1) is independent of zi
iid∼ N(0, δ2) and w is a fixed number in [0, 1]. Taking

w = 1 gives (1), while w = 0 yields (2). Further discussion is given in Section 3.4.3.

In implementing a general purpose Bayesian computation package called YADAS (Graves

(2003a)), one of the authors has found that periodic extra MCMC steps in well-chosen direc-

tions appear to dramatically improve convergence and result in greatly reduced correlation

in the MCMC parameter updates. For example, in model (1), a Metropolis-Hastings step

with proposal (µ + Z, α1 −Z, . . . , αm −Z), where Z is an independent sample from a con-

venient symmetric distribution, serves the purpose well. See Graves (2003b), and see also

Graves et al. (2003) and Graves & Picard (2003) for other motivating examples.
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The central idea of this paper is that problems with convergence in MCMC sometimes

arise because the model is poorly specified, as in model (1). Even though a proper prior

may be specified and the posterior is proper, the lack of identifiability in the basic linear

structure of the likelihood leads to high correlation among MCMC updates. In such cases,

a well-chosen step in a new direction can be beneficial.

We focus on the case of linear models or derivatives. Such models are characterized

by the fact that the likelihood depends on a parameter vector β only through values of

Xβ, for some design matrix X. Obvious examples include generalized linear models with

link g(µ) = Xβ, although other distributional setups are possible. Let S = N (X ′X)

denote the null space of X ′X. If the prior on S is flat so the posterior is improper, Besag

et al. (1995) and Gelfand & Sahu (1999) have shown how adjustments in the null space

to recenter the Markov chain induce convergence to a stationary chain with the desired

posterior distribution. We extend the idea for use with proper posteriors. Ignoring other

parameters for the moment, suppose a prior on β is chosen with proper posterior, and

MCMC is used to estimate a posteriori quantities. Denoting the output from chain as β(k),

we suppose high autocorrelation between successive samples. The method of Graves and

his coauthors is to augment the standard Markov chain cycle with one or more additional

Metropolis-Hastings steps having proposals of the form β+gZ for g ∈ S and symmetrically

distributed Z. Intuitively, these moves tend to shift the Markov chain toward (or directly

away from) the center of the posterior distribution, thereby interrupting the random walk

nature that typifies chains generated from posteriors with high correlations. We summarize

the algorithm as follows. Suppose the posterior density of β is π(β), known up to a

proportionality constant. Throughout, we will let β∗ represent the result of a conventional

Markov chain cycle before possible modification.

Algorithm 1

Step 1. Starting with β(k), generate one full cycle of Gibbs and/or Metropolis-Hastings

steps to obtain β∗;

Step 2. Propose a step of the form βp = β∗ + Zg, where g ranges over a suitable space

S and Z is an independent draw from a convenient symmetric distribution.

Step 3. Using the Metropolis rule, accept β(k+1) = βp with probability min{1, π(βp)/π(β∗)}.
Otherwise set β(k+1) = β∗.

5



If necessary, Steps 2 and 3 can be repeated in each cycle to sample in multiple directions

in S. Some tuning is generally needed to find the most effective distribution for Z. The

fact that the extra step or steps preserves the posterior distribution π(β) is a consequence

of Theorem 2 of Liu & Sabatti (2000) applied to the translation group.

This algorithm is anticipated in the hybrid sampler of Nobile (1998) for improved

MCMC in a multinomial probit model. In its simplest form, the likelihood for Nobile’s

model is invariant with respect to scalar changes in the parameter vector, say θ, of the

form cθ for c > 0. After each Gibbs cycle, Nobile added an additional Metropolis-Hastings

step with proposal cθ for c ∼ Exp(1) and found that convergence was greatly accelerated.

Graves’ method exploits location invariance for likelihoods arising from linear models in

the parameters instead of scale invariance.

To better understand the behavior of Algorithm 1, we were led to consider a Gibbs

alternative proposed by Liu & Sabatti (2000). For simplicity, suppose dim(S) = 1, and let

g denote a spanning vector.

Algorithm 2

Step 1. Generate one full Gibbs cycle from β(k), denoted by β∗;

Step 2. Sample Z with density proportional to π(β∗ + gz) and set β(k+1) = β∗ + gZ.

Again, Step 2 can be repeated in multiple directions in S if necessary, or a corresponding

single multivariate step can be taken. By Theorem 1 of Liu & Sabatti (2000), the chain

{β(k)} retains the stationarity distribution π.

To study the behavior of Gibbs sampling with extra steps as in Algorithm 2, we formalize

the procedure with an equivalent definition in the spirit of the ASSR algorithm of Liu (2003)

as follows. Because of confusion in the role of the parameter β in the models treated

below, it is convenient to replace β with a generic parameter θ. Consider an invertible

transformation γ = Gθ, where

G =



 G′
1

G′
2



 and γ =



 γ ′
1

γ ′
2



 . (4)

The supplemental Gibbs step is to draw a new Gibbs sample γ1+ from the distribution of

γ1 | γ2. The complete algorithm is summarized as follows.

Algorithm 2′
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Step 1. Generate one full Gibbs cycle θ(k), denoted by θ∗;

Step 2. Sample γ1+ from the distribution of γ1 = G′
1θ given γ2∗ = G′

2θ∗;

Step 3. θ(k+1) = G−1(γ ′
1+,γ ′

2∗)
′.

In the following, we will generally assume

G′
1G2 = 0. (5)

Consider the special case where G is orthogonal, i.e., G′G = I. If π denotes the posterior

distribution of θ, Step 2 in Algorithm 2′ is a sample from the distribution with density

[γ1 | γ2∗] ∝ π(G1γ1 + G2γ2∗)

= π(G1(γ1 − γ1∗) + θ∗).

The random walk Metropolis step in Algorithm 1 can be seen as an approximation with

proposal G1z +θ∗ in place of the presumably optimal Gibbs distribution. We also now see

that Algorithm 2 is equivalent to Algorithm 2′, since the conditional distribution of z in

Algorithm 2 is exactly the distribution of γ1−γ1∗ given γ2∗. The issue is how to effectively

choose the subspace spanned by the columns of G1 (or equivalently the columns of G2).

The purpose of this paper is to explore the theoretical justification of these extra cycles.

Clearly the two algorithms are closely related. In this paper, our main theoretical results

pertain to Algorithm 2′. We believe that these results explain not only the effectiveness of

Algorithm 2′ but also of the generalized version Algorithm 1.

The rest of the paper is organized as follows. Section 2 contains two extended numerical

examples showing the practical effects of adding decorrelation steps in a standard linear

model and logistic regression. In Section 3, we show that the Gibbs step of Algorithm 2

is equivalent to an “alternating subspace-spanning resampling” (ASSR) move as proposed

by Liu (2003). This allows us to develop some theory for Algorithm 2 in the case of Gibbs

sampling with a Gaussian posterior. We apply the theory to several general classes of

hierarchical and mixed linear models, and we demonstrate theoretically how added decor-

relation steps in the manner of Algorithm 2 can in principle drive the autocovariance in

successive cycles of Gibbs sampler MCMC to zero. The results often can be anticipated by

direct examination of the likelihood and priors, making implementation straightforward in

a variety of settings. Further application and discussion are presented in Sections 4 and 5.
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2 Decorrelation Steps in Practice

The basic hybrid Algorithm 1 or 2 adds one or more Gibbs or Metropolis-Hastings steps

following each cycle of a standard MCMC algorithm. For linear or generalized linear models,

these steps often turn out to be in the null space of the design matrix and are not hard

to identify by inspection. To illustrate the effectiveness of the method, we consider two

examples. The first is an instance of a classical linear mixed model with conjugate normal

and inverse-gamma priors. We demonstrate how the high autocorrelation often seen with

ordinary Gibbs sampling can be virtually eliminated by a single well-chosen Gibbs step.

The example is meant to be illustrative. For linear models with Gaussian errors, it is

usually feasible to generate a block sample from the Gaussian portion of the posterior.

However, in very large problems, this strategy may not be practical. The second example

demonstrates that our techniques are also effective for non-Gaussian models. We present

a simulated data set featuring a two-way ANOVA model with interactions and binomial

data. We use Metropolis-Hastings sampling with additional Metropolis moves and achieve

good mixing.

Example 3: Mixed Model Balanced Incomplete Block Design We illustrate the

performance of Gibbs sampling with a Gibbs decorrelation step using data from an exper-

iment examining the effects of six fertilizer treatments on potato yield. The data set is

given in Example 9.4.1 of Christensen (1996). The dependent variable is potato yield in

pounds. The model is

yij = αi + θj + εij, εij
iid∼ N(0, τ−1

0 ),

where i = 1, . . . , 6 indexes the block and j ∈ Di is the set of fertilizer treatments in block i.

There are a total of 30 observations, with five of the six possible treatments in each block.

The block effects are random and the treatment effects are fixed. Because we wanted our

prior specification to be noninformative, the fixed part of the model must have full rank

and we did not include an extra constant term in the model. We took flat priors on the θj

and a hierarchical prior on the random effects, αi independent N(0, τ−2
1 ) with hyperprior

[τ1] ∝ τ−3/2
1 . Finally, we took the prior [τ0] ∝ τ−1

0 .

This parameterization is centered since αi is modeled as a random effect. However,

without restriction, the model is still poorly specified because changes in parameters of

the form αi∗ = αi + Z, θj∗ = θj − Z, i, j = 1, . . . , 6, leave the likelihood unchanged.
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Letting β = (α1, . . . , α6, θ1, . . . , θ6)′, the null space of the corresponding X ′X consists

of all vectors of the form cg1, where g1 = (1, . . . , 1,−1, . . . ,−1)′. This suggests using

Algorithm 1 to supplement the usual Gibbs sampling cycle with extra moves in the direction

β+Zg1 for random Z using the Metropolis rule. Alternatively, after a suitable nonsingular

transformation γ = Gβ with G′ = [g1,G2], the extra Gibbs step in Algorithm 2 can be

used to sample γ1. Either extra step has the effect of shifting the Markov chain parallel to

the major axis of the posterior distribution and reducing autocorrelation.

Since conjugate distributions exist for all the full conditionals with this model, we used

Gibbs sampling on blocks. We updated the random effects, the fixed effects, and the

variance components in turn in each cycle. (This design is not complete, so block updates

are theoretically more efficient than individual parameter updates.) The left panels of

Figure 1 show trace plots of the MCMC run for selected parameters following 1,000 burn-

in cycles. The poor mixing predicted by the nonunique parameterization is clearly evident.

Next, we implemented Algorithm 2′ with γ1 = g′
1β. We computed the required full-rank

11 × 12 matrix G′
2 such that G′

2g1 = 0 by computing the eigenvectors of X ′X. Step 2 of

Algorithm 2′ is simple since the full conditional is normal. The corresponding trace plots for

1,000 cycles following a 1,000 cycle burn-in run in the right panels of Figure 1 show almost

perfect mixing. The plots on the right for α1 and θ1 display outliers and rather large

posterior variances. These plots demonstrate how sampling with the decorrelation step

allows much more efficient exploration of the posterior distribution by the Gibbs sampler.

These nearly independent draws from the marginal posterior distributions display the true

posterior variability of the posteriors under our weakly informative priors. It would take

far longer to see this variability with the naive Gibbs sampler.

The naive sampling scheme works well for sampling from the posterior of τ0. The

indeterminacy in the specification of the αi and θj individually is not present in estimating

αi+θj. Consequently, the residual sum of squares needed to sample from the full conditional

posterior of τ0 is stable. However, the situation with other variance components can be

different. The plots at the bottom of Figure 1 clearly show the improved mixing with the

extra decorrelation step. As a side benefit not shown here, the burn-in period appears

much shorter with decorrelation steps than without.

Example 4: Logistic Two-way ANOVA with Interactions The next example was
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implemented using YADAS (Graves (2003a,b)), with which the methods discussed in this

paper are particularly useful, intuitive and easy to apply. YADAS rarely samples from

exact conditional distributions, preferring to use exclusively Metropolis(-Hastings) moves.

The first “naive” attempt at an analysis updates each scalar parameter individually, using

a random-walk step. When this fails to generate algorithms that mix adequately, YADAS

features a MultipleParameterUpdate that makes it easy to propose Metropolis–Hastings

moves to multiple parameters simultaneously. This approach makes use of the general-

ity of the formula for Metropolis–Hastings acceptance probabilities. This paper discusses

moves that are samples from conditional distributions of linear transformations of parame-

ters. In the Metropolis context, the analogous moves feature proposals chosen randomly in

directions in the null space of X ′X, accepted or rejected according to the Metropolis rule.

A generalized linear model example where additional Metropolis moves in directions

in the null space of X ′X greatly facilitate mixing of the MCMC algorithm is a two-way

ANOVA model with interactions and binomial data:

logit(pij) = µ + αi + βj + γij,

for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4. We placed N(0, 100) prior distributions on each of µ, the

αi, the βj, and the γij. For each (i, j) we constructed synthetic data yij from the binomial

distribution with sample sizes nij ≡ 10 and probability pij. The model is overparameterized:

to explain only twelve means the model uses twenty parameters.

The naive algorithm in which we update each of the twenty parameters in turn using

random-walk Metropolis steps mixes poorly, and we improve this mixing by adding several

Metropolis steps in directions that do not change the likelihood. After a full cycle of

individual parameter updates, we obtain αi∗, βj∗, and γij∗. Next, for each i, we generate

an innovation Ziα ∼ N(0, s2
iα), and propose new values of αi and γij according to αi+,1 =

αi∗ + Ziα and γij+,1 = γij∗ − Ziα for all j. After the acceptance or rejection, the new

value of αi will be denoted αi∗,1, which is equal to either αi∗ or αi+,1, and we use similar

notation for γij∗,1. Analogously, for each j we generate an innovation Zjβ ∼ N(0, s2
jβ), and

propose new values of βj and γij according to βj+,2 = βj∗ + Zjβ and γij+,2 = γij∗,1 − Zjβ

for all i. The new values of these parameters are denoted by βj∗,2 and γij∗,2. Finally, we

generate normal random variables Wµ,Wα,Wβ, and Wγ with Wµ + Wα + Wβ + Wγ = 0,

and propose µ+,3 = µ∗ + Wµ, αi+,3 = αi∗,1 + Wα for all i, βj+,3 = βj∗,1 + Wβ for all j, and
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γij+,3 = γij∗,2 + Wγ for all (i, j). This adds up to a total of eight additional Metropolis

moves. It can be verified that these moves correspond to updating parameters in the null

space of the implicit balanced X ′X matrix as in the low data variance case of Theorems

2 and 3. See Figure 2 for trace plots of the results under each of the two algorithms. The

αi’s, the βj’s, and the γij’s all mix efficiently (the Raftery & Lewis (1996) diagnostics agree)

whereas µ still causes some trouble. The right column features the algorithm that includes

the additional update steps. This algorithm takes more time, but only by a factor of about

1.5, and it is clear that two iterations of the improved chain are more valuable than three

of the unimproved chain. We also stress that moves of this form are easy to implement,

especially in YADAS with its MultipleParameterUpdate construct.

3 Gibbs Decorrelating Steps in Gaussian Linear Models

This section contains the main theoretical results underlying the use of decorrelating steps

in linear models. While Algorithms 1 and 2 in principle apply to arbitrary posterior distri-

butions, in this section we focus on Algorithm 2 applied to Gibbs sampling in linear models

with Gaussian errors. While these results are interesting in their own right, we believe that

they also shed light on the behavior of decorrelation steps in situations when the posterior

is only approximately Gaussian such as hierarchical generalized linear models (see Sahu &

Roberts 1999).

Subsection 3.1 reviews the basic Gibbs sampling setup of Roberts & Sahu (1997) and

contains the key result, Theorem 1, which demonstrates that the draws in the chain {θ(k)}
can be made independent under certain circumstances with the proper choice of G2. The

remainder of this section is devoted to applications where we show that the intuitive choices

for decorrelating steps suggested in the introduction can lead to near perfect decorrelation

in a variety of applications with linear and mixed linear models.

3.1 Gibbs Decorrelation Steps with a Gaussian Posterior

To exploit the form of the autocorrelation between successive Gibbs cycles, we examine a

general case of sampling from a multivariate normal distribution. The setting and notation

are adapted from Roberts & Sahu (1997). Suppose θ′ = (θ′
1, . . . ,θ

′
r) has block structure

with (posterior) distribution θ ∼ N(µ,Σ). Let Σ−1 = Q be the precision matrix, and
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assume both have block structure commensurate with θ,

Σ =





Σ11 Σ12 · · · Σ1r

Σ21 Σ22 · · · Σ2r

...
...

. . .
...

Σr1 Σr2 · · · Σrr




and Q =





Q11 Q12 · · · Q1r

Q21 Q22 · · · Q2r

...
...

. . .
...

Qr1 Qr2 · · · Qrr




.

Consider sequential Gibbs block updates of θ1, . . . ,θr, the usual sweep order in MCMC

labeled DUGS in Roberts & Sahu (1997). Assuming Gibbs samples from the stationary

distribution, we will consider a single cycle and label the updates as follows for this cycle.

Generate θ1∗ given θ = (θ1, . . . ,θr), then generate θ2∗ given (θ1∗,θ3, . . . ,θr), etc., with

θ∗ = (θ1∗, . . . ,θr∗) denoting the result of one full Gibbs cycle.

Since θ∗ is obtained from θ from a series of Gibbs steps, each of which has a joint normal

distribution with the previous step, it is obvious that the joint distribution of θ and θ∗ is

normal, and the conditional distribution of θ∗ given θ is also normal. However, this joint

distribution is fairly complicated. Roberts & Sahu (1997) gave a concise (if nonintuitive)

expression as follows. Following Roberts & Sahu (1997) and Gelfand & Sahu (1999), let

Q = L − U , where L is the lower block triangular part of Q and U is the negative of the

strictly upper block triangular part of Q, i.e. Lij = 0 for j > i and Uij = 0 for i > j. Define

B = L−1U . (Roberts & Sahu (1997) use an equivalent definition of B.) Then Roberts &

Sahu (1997) showed that the distribution of θ∗ given θ is N(Bθ + (I −B)µ,Σ−BΣB′).

Thus the Markov chain is a first order vector-autoregression. The matrix B plays a central

role in our work. Note that the condition E(θ∗ | θ) = Bθ + (I − B)µ implies

Cov(θ∗,θ) = BΣ. (6)

A useful equivalent way of writing the first order autoregression for updating θ is

θ∗ = (I − B)µ + Bθ + Z, (7)

where Z has a multivariate normal distribution with mean zero and is independent of

θ = θ(0). Since θ∗ has again the N(µ,Σ) distribution, Z ∼ N(0,Σ− BΣB′).

By Theorem 1 of Liu & Sabatti (2000), the decorrelation step of Algorithm 2′ for

Gaussian posteriors preserves the Markov nature (7) of the MCMC algorithm. To derive

the explicit form of the vector-autoregression, define Σ̃ = GΣG′, where G is defined in
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(4), and let Q̃ = Σ̃−1 be partitioned as

Q̃ =



 Q̃11 Q̃12

Q̃21 Q̃22



 . (8)

It is not necessary to assume that G is orthogonal. For a general result, let G−1 = H =

(H1,H2) and define

V = (H2 − H1Q̃
−1
11 Q̃12)G

′
2. (9)

With this notation, we have the following extension of Theorem 1 of Roberts & Sahu (1997),

whose proof is in the appendix.

Theorem 1 Let θ+ = G−1(γ ′
1+,γ ′

2∗)
′, where γ1+ ∼ (γ1 | γ2∗) and γ∗ = Gθ∗, with θ∗

given by (7).

(a) The correlation between successive updates in one augmented cycle is Cov(θ+,θ) =

V BΣ.

(b) The transition law is (θ+ | θ) ∼ N((I − V B)µ + V Bθ,Σ− V BΣB′V ′).

The goal of the extra update step is to reduce the autocorrelation between successive

updates. With the aid of the theorem, we see that it is theoretically possible to entirely

eliminate this autocorrelation by a proper choice of transformation G.

Corollary 1 If G′
2B = 0, then

(a) Cov(θ+,θ) = 0, and

(b) the transition law is i.i.d. sampling (θ+ | θ) ∼ N(µ,Σ).

The motivation for the decorrelation step is that the matrix B may essentially have low

rank. In that case, one would take the columns of G1 to span the most important part of

the column space of B. If (5) holds, then Algorithm 2′ will be highly effective. In some

cases, it may be worthwhile to compute B directly and construct a good transformation

to reduce G′
2B by examining the singular value decomposition of B. In other cases, it is

possible to achieve good results simply by inspecting the problem. In the next sections, we

explore cases where it is possible to specify good decorrelation steps a priori.
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3.2 Gibbs Sampling in Linear Mixed Models: Low Data Variance

We first restrict attention to the Gaussian linear model with fixed error variance and conju-

gate priors. Using the framework of Gelfand & Sahu (1999), we show that a decorrelation

step or steps in the null space of X leads to asymptotically uncorrelated successive Gibbs

samples when the data variance goes to zero.

Consider the standard Gaussian linear model

y = Xβ + ε (10)

with ε ∼ Nn(0, τ−1
0 In). Assume the conjugate prior for β

p(β) ∝ |M (τ )|1/2
+ exp

{
− 1

2
β′M (τ )β

}
, (11)

where |M |+ denotes the product of the positive eigenvalues of M and τ = (τ1, . . . , τr)′ is

a vector of (known) precisions (i.e. inverses of variance components) associated with the

terms of the linear model (τi = 0 is possible). Typically, M (τ ) is a block-diagonal matrix,

M (τ ) = diag(τ1M1, . . . , τrMr) (12)

for nonnegative matrices Mi. For example, consider the two-way additive model yijk =

µ + α1i + α2i + εijk, i = 1, . . . ,m1, j = 1, . . . ,m2, k = 1, . . . , nij. Let X = [X1,X2,X3],

where X1 = (1, . . . , 1)′, and in matrix notation write Xβ = X1µ + X2α1 + X3α2. Thus

β′ = (µ, α′
1,α

′
2), and the prior is µ ∼ N(0, τ−1

1 ), α1 ∼ N(0, τ−1
2 I), α2 ∼ N(0, τ−1

3 I).

Assuming τ0X ′X + M (τ ) has full rank, the posterior distribution of β given (τ0, τ ,y)

is

(β | τ0, τ ,y) ∼ N(β̃, (τ0X
′X + M (τ ))−1), (13)

where

β̃ = (τ0X
′X + M (τ ))−1X ′y. (14)

In the general case, let X = [X1, . . . ,Xr], where each Xi is a full rank n × mi matrix,

and let m = m1 + · · ·+mr be the total number of parameters in the linear model. Assume

further that M (τ ) is block-diagonal as in (12). We examine the case τ0 → ∞ (i.e., data

variance goes to zero), and consider the matrix Bτ0 for fixed τ as a function of τ0. Let
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Qτ0 = τ0X ′X + M (τ ) = Lτ0 − Uτ0 as before, where Lτ0 is lower block triangular, and

let Bτ0 = L−1
τ0 Uτ0 . Finally, define Q = X ′X = L − U , where again L is lower block

triangular. Then B = limτ0→∞ Bτ0 = L−1U . Suppose G2 is chosen so that the columns

of G2 span C(X ′). Gelfand & Sahu (1999) considered the lower dimensional parameter

δ = G′
2β. If

QL−1Q = Q, (15)

they showed that the Gibbs sampler on δ behaves well, and in fact, in the low data variance

case as τ0 → ∞, successive iterates tend to be independent. We have the following closely

related theorem. In the following, the notation C(A) and N (A) refers to the column and

null space respectively of a matrix A.

Theorem 2 Suppose (15) holds. Then

C(B) ⊆ N (X ′). (16)

Assume further that C(G2) ⊆ C(X ′) so that N (X ′) ⊆ C(G1). Then if γ1+ is sampled from

the distribution of γ1 = G′
1θ given γ2∗ = G′

2θ∗ and θ+ = G−1(γ1+
′,γ2∗

′)′,

lim
τ0→∞

Cov(θ+,θ) = 0. (17)

Proof. By Corollary 1, (17) is true if limτ0→∞ G′
2Bτ0 = 0. Under the assumption of the

theorem, it suffices to show limτ0→∞ XBτ0 = 0. By continuity, limτ0→∞ XBτ0 = XB, so

it suffices to show (16). But QL−1Q = QL−1(L − U ) = Q − QB. Since

XB = 0 (18)

if and only if QB = 0, (16) holds if and only if L is a generalized inverse of Q, i.e. (15)

holds.

The theorem gives an abstract answer to the question of finding an appropriate extra

parameter to define the decorrelation Gibbs step in Algorithm 2′ for the low data variance

case with linear models under the generalized inverse condition (15). The extra step should

be taken in the null space of X ′X. To apply this result, one needs a readily available

criterion to verify that L−1 is a generalized inverse of Q. Gelfand & Sahu (1999) claimed

that the generalized inverse property holds for any matrix of the form

X = (X0∆1,X0∆2, . . . ,X0∆s−1,X0), (19)
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where X0 has full rank. This class of design matrices includes ANOVA models that are

fully nested or main-effects models that include all interactions. We show that certain

balanced additive models with or without interactions also share this interesting property.

The proof is contained in the appendix.

Theorem 3 Let Pi = Xi(X ′
iXi)−1X ′

i denote the perpendicular projection matrix on the

column space of Xi for i = 1, . . . , r. If

PiPj = PjPi, 1 ≤ i, j ≤ r, (20)

then QL−1Q = Q.

To summarize, if either condition (19) or condition (20) holds, adding a decorrelation

Gibbs step in the null space of X ′X will produce perfect sampling in the limit as the data

variance goes to zero.

To illustrate how Theorem 2 works, we examine two simple models where we can actually

calculate B.

Example 1 (cont.) Consider first the simplified one-way effects model, yi = µ+αi +εi,

i = 1, . . . ,m, with independent components εi ∼ N(0, τ−1
0 ), αi ∼ N(0, τ−1

1 ) and µ ∼
N(0, τ−1

2 ). (Note that τ2 = 0 is possible.). Letting X = (1, I) be the corresponding

m × (m + 1) design matrix, the posterior precision matrix is

Q(τ ) =



mτ0 + τ2 τ01′

τ01 (τ0 + τ1)I



 .

By direct calculation,

lim
τ0→∞

Bτ0 = lim
τ0→∞

(m + τ2/τ0)
−1



0 −1′

0 (1 + τ1/τ0)−111′



 =



0 −1′

0 11′



 .

This shows that the limiting autocovariance between successive complete Gibbs cycles is

nonzero. However, an ASSR step with G2 ⊥ (−1, 1, . . . , 1)′ will achieve perfect limiting

decorrelation. The natural way to achieve this is to take G1 = (−1, 1, . . . , 1)′ and find G2

such that G′
2G1 = 0. In other words, let γ1 = (−1, 1, . . . , 1)′(µ, α1, . . . , αm) = −µ+

∑m
i=1 αi.

This corresponds exactly to the extra Metropolis move suggested by direct inspection of

the likelihood in the introduction.
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Example 5: Two-way ANOVA Next, consider the balanced two-way ANOVA effects

model

yij = µ + β1i + β2j + εij, i = 1, . . . , s; j = 1, . . . , t,

with µ ∼ N(0, 1/τ1), β1i
iid∼ N(0, 1/τ2) for i = 1, . . . , s, and β2j

iid∼ N(0, 1/τ3) for j =

1, . . . , t. Letting β′ = (µ, β1,β2), without loss of generality, assume X = (1,X1,X2),

where X1 = Is ⊗ 1t and X2 = 1s ⊗ It. One can show that the precision matrix of the

posterior is

Q = τ0





st + τ1/τ0 t1′
s s1′

t

t1s (t + τ2/τ0)Is 1s1′
t

s1t 1t1′
s (s + τ3/τ0)It



 .

Consequently, letting τ0 → ∞ to model the low data variance case,

lim
τ0→∞

1

τ0
Q =





st t1′
s s1′

t

t1s tIs 1s1′
t

s1t 1t1′
s sIt



 ,

and it is not hard to show that

lim
τ0→∞

Bτ0 =





0 −1
s1

′
s −1

t 1
′
t

0 1
s1s1′

s 0

0 0 1
t 1t1′

t



 .

Thus the column space of the limiting B matrix is spanned by the two vectors (−1,1′
s,0

′)′

and (−1,0′,1′
t)

′ as predicted by the theorem, giving decorrelation step parameters γ1 =

−µ +
∑s

i=1 β1i and γ2 = −µ +
∑t

j=1 β2j. A joint Gibbs update of (γ1, γ2) will reduce

autocorrelation in the MCMC chain for the low variance case.

3.3 Gibbs Sampling in Linear Mixed Models: High Data Variance

The high data variance limiting case is easier, since Gibbs sampling in the limit is sampling

from the prior. The following result pertains to the case where the prior in (11) is proper.

Since M (τ ) is block diagonal, Gibbs sampling in blocks from the posterior produces perfect,

independent samples.

Theorem 4 Under model (10) with prior (11) and τi > 0, i = 1, . . . , r,

lim
τ0→0

Bτ0 = 0.
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Proof. Under the assumptions of the theorem, limτ0→0 Lτ0 = M (τ ), and limτ0→0 Uτ0 =

0.

3.4 Gibbs Sampling in Hierarchical Gaussian Models

The setup for hierarchical centering of Gelfand et al. (1995) is a special case of the hierar-

chical model

y = Xβ + ε, ε ∼N(0, τ−1
0 I), (21)

β = Zα + η, η ∼ N(0,M (τ )−1),

α ∼ N(0, τ−1
r+1M

−1
r+1),

where M (τ ) is again given by (12). We also assume Mr+1 is a fixed, known matrix.

For Gibbs sampling, perform block updates on the components of β = (β′
1, . . . ,β

′
r)

′. Let

X = (X1, . . . ,Xr) as before, and again assume conjugate independent priors

βk | α ∼ N(Zkα, τ−1
k M−1

k ), k = 1, . . . , q (22)

βk | α ∼ N(0, τ−1
k M−1

k ), k = q + 1, . . . , r

for some 1 ≤ q ≤ r. In this case, Z has a block diagonal form (although not square),

Z = diag(Z1, . . . ,Zq),

and M (τ ) is given again by (12). Finally, assume Z ′M (τ )Z and Mr+1 have the same

block diagonal structure coinciding with the blocks of α being updated. Typically, the αk

are scalars, the Zk are column vectors, and Z ′M (τ )Z and Mr+1 are diagonal matrices.

In the notation of Section 3.1, θ = (β′,α′)′ and θ∗ is the result of one complete cycle

of Gibbs sampling applied to the components of β and α. To study the autocorrelation

in the Gibbs samples as a function of data precision τ0, fix the other variance components

τ1, . . . , τr, τr+1. Since Cov(θ∗,θ) = Bτ0Στ0 again from (6), we examine the behavior of Bτ0

as a function of τ0.

One can see that the precision matrix of the posterior is

Qτ0 =



τ0X ′X + M (τ ) −M (τ )Z

−Z ′M (τ ) Z ′M (τ )Z + τr+1Mr+1



 =



Qxx,τ0 Qxz

Qzx Qzz,



 , (23)

where Qxx,τ0 = τ0X ′X + M (τ ), etc. (Note that only the upper left block depends on τ0).
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Theorem 5 In model (21) and (22), suppose Z ′M (τ )Z and Mr+1 are block diagonal.

Let Qxx,τ0 = Lxx,τ0 − Uxx,τ0, where Lxx,τ0 is lower block triangular and Uxx,τ0 is strictly

upper block triangular, and define Bxx,τ0 = L−1
xx,τ0Uxx,τ0. Then the following results hold.

(a) For all cases,

Bτ0 =



 Bxx,τ0 −L−1
xx,τ0Qxz

−Q−1
zz QzxBxx,τ0 Q−1

zz QzxL−1
xx,τ0Qxz



 . (24)

(b) To model the low data variance case, let limτ0→∞ Bxx,τ0 = Bxx,∞. Then

lim
τ0→∞

Bτ0 =



 Bxx,∞ 0

(Z ′M (τ )Z + τr+1Mr+1)−1Z ′M (τ )Bxx,∞ 0



 . (25)

(c) Finally, for the high data variance case,

lim
τ0→0

Bτ0 =



0 Z

0 (Z ′M (τ )Z + τr+1Mr+1)−1Z ′M (τ )Z



 . (26)

The proof is again in the Appendix.

We now consider the two limiting cases in turn.

3.4.1 Hierarchical Models: Low Data Variance

Since Qxx,τ0 is the posterior precision matrix Q for the standard Gaussian linear model (10)

and (11), Bxx,τ0 is exactly the autocovariance matrix factor from Section 3. In particular,

in the low data variance case, the results of Section 3.2 apply. For the rest of this section,

assume that X satisfies condition (15).

To illustrate how Theorem 5(b) can be applied, suppose vectors u1, . . . ,uk span S =

N (X ′X). By Theorem 2, these vectors also span the range space of Bxx,∞. Define vj =

(Z ′M (τ )Z + τr+1)−1Z ′M (τ )uj, and let gj = (u′
j,v

′
j)

′, j = 1, . . . , k. If G1 = [g1, . . . , gk]

and G2 is chosen accordingly, equation (25) implies limτ0→∞ C(Bτ0) ⊂ C(G1). Thus by

Corollary 1 again, a joint supplemental Gibbs update of the new parameters γj = u′
jβ+v′

jα,

j = 1, . . . , k, gives a complete decorrelation step for the limiting low data variance case.

A Metropolis-Hastings step or steps in these variables in practice also serves as a useful

decorrelation step.

The case when X has full rank is especially easy.
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Corollary 2 In the hierarchical model (21) and (22), if X has full rank and satisfies

(15), limτ0→∞ Bτ0 = 0.

Proof. Equation (16) implies

X ′Bxx,∞ = 0, (27)

which means Bxx,∞ = 0 since X has full rank. The corollary follows immediately from

(25).

Example 2 (cont.) This corollary clearly covers the the hierarchical version of one-way

ANOVA in (2). Since X has full rank, successive Gibbs full cycles produces independent

samples from the posterior in the limit, as shown in Gelfand et al. (1995). It is instructive

to obtain the result by direct computation of B. Take r = 1, β′ = (µ1, . . . , µm), α = µ,

Z = 1m, M (τ ) = τ1Im, and M2 = 1. Without loss of generality, let τ0 = n/δ0 and X = I.

The posterior precision matrix is

Q =



(τ0 + τ1)Im −τ11m

−τ11′
m mτ1 + τ2



 .

If a block Gibbs update is performed on β followed by a Gibbs update of α,

Bτ0 =



0 τ1
τ0+τ1

1m

0 τ2
1

(mτ1+τ2)(τ0+τ1)



 .

Clearly, as τ0 → ∞, Bτ0 → 0, verifying that hierarchical centering eradicates the autocor-

relation in MCMC cycles. The same conclusion holds in one-way ANOVA if the parameters

µ1, . . . , µr are updated individually by Gibbs sampling.

However, in typical models with crossed effects, the null space of X ′X is nonempty even

without the constant term. Thus hierarchical centering cannot completely eliminate auto-

correlation in sucessive Gibbs cycles without further adjustments. Sweeping (Vines et al.

1996) the constant terms from all but one centered effect in an additive model does produce

a full-rank X matrix (at the cost of complication in the structure of the prior). Sweeping

crossed-effect terms is more complicated. The introduction of suitable decorrelating steps

is an easy alternative that retains the structure of simple additive models.

Example 6: Mixed Model Two-way ANOVA To illustrate the situation with higher

order ANOVA, consider the following balanced complete two-way example. This setup is
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closely related to the incomplete balanced design of Example 3. Assume yij = β1i+β2j +εij,

i = 1, . . . , s; j = 1, . . . , t. We have written this model without a constant term, so suppose

the prior for the first effect is centered with β1i
iid∼ N(µ, 1/τ1) for i = 1, . . . , s, and the second

effect has prior β2j
iid∼ N(0, 1/τ2) for j = 1, . . . , t. Further assume the prior µ ∼ N(0, 1/τ3).

This is an example of a mixed model of the form of Section 3.4 with q = 1 and r = 2.

Consideration of the likelihood alone as in Example 3 suggests invariance with re-

spect to transformations of the form β1i + Z, β2j − Z, α + Z for all i and j. Thus

Metropolis steps or equivalent Gibbs samples corresponding to the new parameter γ̃ =

u′
1β with u1 = (1, . . . , 1,−1, . . . ,−1, 1)′ and β = (β11, . . . , β1s, β21, . . . , β2t)′ are plau-

sible. Somewhat surprisingly, the theorem adds a term with the random effect α to

this parameter. Specifically, with Z = (1′
s,0

′) and M = diag(τ1Is, τ2It), in this case

v1 = (Z ′M (τ )Z + τr+1)−1Z ′M (τ )u1 = sτ1/(sτ1 + τ3), so the theoretically optimal decor-

relating parameter is in the direction g1 = (u′
1, v1)′, i.e., γ =

∑s
i=1 β1i −

∑t
j=1 β2j + v1α.

We have found that the decorrelating step using γ̃ rather than the optimal γ works well in

practice.

We can verify this formally by computing the autocovariance factor directly. Without

loss of generality, let X = (X1,X2) with X1 = Is ⊗ 1t and X2 = 1s ⊗ It. It follows that

the precision matrix of the posterior is explicitly

Q =





τ0X ′
1X1 + τ1Is τ0X ′

1X2 −τ11s

τ0X ′
2X1 τ0X ′

2X2 + τ2It 0

−τ11′
s 0 sτ1 + τ3



 =





(tτ0 + τ1)Is τ01s1′
t −τ11s

τ01t1′
s (sτ0 + τ2)It 0

−τ11′
s 0 sτ1 + τ3



 .

Routine calculations give

Bτ0 =
τ0

tτ0 + τ1





0 −1s1′
t

τ1
τ0

1s

0 sτ0
sτ0+τ2

1t1′
t − sτ1

sτ0+τ2
1t

0 − sτ1
sτ1+τ3

1′
t

sτ2
1

τ0(sτ1+τ3)



 .

In the limiting case with small data variance (τ0 → ∞), take the noninformative prior

on µ with τ3 = 0. This leads to the limiting autocovariance factor

lim
τ0→∞

Bτ0 =
1

t





0 −1s1′
t 0

0 1t1′
t 0

0 − sτ1
sτ1+τ3

1′
t 0



 .

21



Thus even in the limiting low data variance case, B does not vanish, and a further decorre-

lation step would be useful with new parameter γ = −
∑t

i=1 β1i+
∑s

j=1 β2j−sτ1α1/(sτ1+τ3).

3.4.2 Hierarchical Models: High Data Variance

In the usual case with nonsingular Z, approximate decorrelating parameters to update for

the high data variance case can be obtained directly from Theorem 5(c) by taking

G1 =



 Z

(Z ′M (τ )Z + τr+1Mr+1)−1Z ′M (τ )Z



 .

Consider Example 2 again with the parameterization from Section 3.4.1. Then G1 =

(1′
m,mτ1/(mτ1 + τ2))′. A supplemental Metropolis step with proposal (β1 + Z, . . . , βm +

Z,mτ1α/(mτ1 + τ2) + Z) or the related Gibbs update of the new parameter γ =
∑m

i=1 βi +

mτ1α/(mτ1 + τ2) would be effective for improving mixing.

One can anticipate this result when the prior on α is diffuse relative to the prior distri-

bution of the βis (i.e., τ2 ≈ 0) by direct consideration of the unnormalized posterior, which

in this case is proportional to

exp

{
−τ0

2

m∑

i=1

(yi − βi)
2

}
exp

{
−τ1

2

m∑

i=1

(βi − α)2

}
exp

{
−τ2α2

2

}
. (28)

As τ0 → 0 and τ2 → 0, the middle term dominates (28). Thus a Metropolis move with

proposal of the form (βC
1 , . . . , βC

m, αC) = (β1 + Z, . . . , βm + Z, α + Z), which corresponds to

a Gibbs update of the parameter γ1 = β1 + · · · + βm + α, is an appropriate decorrelation

step for high data variance.

3.4.3 Partially Noncentered Prior

For the special case of one-way ANOVA, one can compute the exact autocovariance factor

for Gibbs sampling using prior (3) given by Papaspiliopoulos et al. (2003). With the

notation there, β = (βw
m, . . . , βw

m)′, X = Im ⊗ 1n and α = µ, and τi = 1/δi, i = 1, 2, 3.

Then

Q =



 (nτ0 + τ2)Im (nτ0w − τ2(1 − w))1m

(nτ0w − τ2(1 − w))1′
m [nτ0w2 − τ2(1 − w)]m + τ1





and

B =



0 −nτ0w−τ2(1−w)
tau0+τ2)

1m

0 m[nτ0w−τ2(1−w)]2

(nτ0+τ2){[nτ0w2−τ2(1−w)]m+τ1}



 .
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Taking w = τ2/(nτ0 + τ2) = δ0/(nδ2 + δ0) eradicates the autocovariance between successive

Gibbs cycles.

4 Full Bayesian Models

In practice, some of the precisions or variances also have prior distributions. Considering

the general model (10), we assume conjugate (possibly improper) priors for the τi,

[τi] ∝ τai−1
i e−biτi , i = 0, . . . , r,

for some real-valued hyperparameters of (ai, bi). When ai and bi are both positive, the

prior is proper. Of course, one or more precision parameters τi could be fixed constants,

for example, for “fixed” effects. Since we are mainly concerned with updating the vectors

β for fixed τi, we assume that all τi are random for simplicity. Then the joint density for

the likelihood and priors satisfies

[y | β, τ0] [β | τ ] [τ0] [τ ] ∝ τn/2
0 exp

{
−τ0

2
‖y − Xβ‖2 − 1

2
β′A(τ )β

} r∏

i=0

τai−1
i e−biτi .

By conjugacy, we have the full conditional distributions for (τ0, τ ),

(τ0 | y,β, τ ) ∼ Gamma
(
a0 +

n

2
, b0 +

1

2

∥∥∥y −
r∑

j=1

Xjβj

∥∥∥
2)

,

(τi | y,β, τ0, τ−i) ∼ Gamma
(
ai +

1

2
mi, bi +

1

2
β′

iMiβi

)
, i > 0.

In this case, we can update β for fixed (τ0, τ ) with Gibbs or Metropolis Hastings decorre-

lation steps. Example 3 of Section 2 illustrates the effectiveness of decorrelation steps in

linear models with a full Bayesian analysis when (τ0, τ ) is treated as random.

5 Discussion

Convergence to the stationary distribution and mixing in MCMC algorithms can often be

greatly improved by the addition of a one or more relatively simple decorrelation steps

to standard Gibbs or Metropolis-Hastings cycles. In this paper, we have shown how these

extra moves can facilitate Bayesian computation for distributions involving linear modeling

in the parameters. Much of the previous research in the area including Gelfand et al. (1995),

Vines et al. (1996), Gelfand et al. (1996) and Papaspiliopoulos et al. (2003) has advocated

modified priors and reparameterizations to deal with problems caused by high a posteriori
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correlation among parameters. In our view, a statistician ought to be able to estimate the

posterior resulting from any prior he or she chooses. We believe the methods presented

here are a step in that direction.

In many cases, suitable decorrelation steps can be deduced by direct inspection of the

likelihood. This observation has led us to consider analysis of many of the traditional linear

parameterizations that have less than full rank. Decorrelation steps in the null space of

the linear model have proven effective in a number of applied problems. In this paper,

we have presented a theoretical analysis with Gaussian distributions and priors coupled

with a Gibbs version of the decorrelation step. In doing so, we adapt the Alternating

Subspace Spanning Resampling algorithm of Liu (2003) to linear models. The somewhat

surprising result is that in the low-data variance case (i.e., with increasingly large sample

sizes), MCMC with decorrelation steps approaches “perfect sampling” (Kendall 1998) in

that successive Markov chain cycles become asymptotically independent.

Many strategies have been employed to estimate a posteriori quantities by sampling.

Different distributions often require different methods, and no single technique has been

found to work universally well. Decorrelation steps offer a useful addition to the growing

body of methods.
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6 Appendix
Proof of Theorem 1 The decorrelation step samples γ1+ from the distribution γ1 | γ2∗.
Let

µ̃ =

(
µ̃1

µ̃2

)
=

(
G′

1µ
G′

2µ

)
.

Then γ1|γ2∗ ∼ N(µ̃1 − Q̃−1
11 Q̃12(γ2∗ − µ̃2), Q̃

−1
11 ), or equivalently,

γ1+ = µ̃1 − Q̃−1
11 Q̃12(γ2∗ − µ̃2) + Z+

1 ,

where Z+
1 ∼ N(0, Q̃−1

11 ). Using G−1 = H = (H1,H2),

θ+ = H1γ1+ + H2γ2∗

= H1{G′
1µ − Q̃−1

11 Q̃12G
′
2(θ∗ − µ) + Z+

1 } + H2G
′
2θ∗.

Noting that H1G′
1 + H2G′

2 = I,

θ+ = (I − V )µ + V θ∗ + H1Z1+,

where V is given in (9). Now substitute (7) and simplify to obtain

θ+ = (I − V B)µ + V Bθ + Z+,

where Z+ = V Z + H1Z
+
1 is independent of θ. Since θ+ has the N(µ,Σ) distribution,

Theorem 1 follows.

To prove Theorem 3, we first need the following simple lemma.

Lemma 1 If (20) holds and P1:j denotes the perpendicular projection matrix onto the
column span of X1, . . . , Xj for j = 1, . . . , r, then

PiP1:j = P1:jPi (29)

for i = 1, . . . , r.
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Proof. The proof is by induction. By condition (20), the result is true for j = 1.
Suppose (29) is true for some j = k, 1 ≤ k < r. Using the induction hypothesis, it is easy
to check that

P1:(k+1) = P1:k + Pk+1 − P1:kPk+1 (30)

= P1:k + Pk+1 − Pk+1P1:k,

since the right side is symmetric and idempotent with range containing col(X1, . . . ,Xk+1).
But by the induction hypothesis, the right side of (30) commutes with each Pi, so (29)
holds for j = k + 1.

Proof of Theorem 3. We prove (18) or equivalently (15) by induction. Define Qi =
(X1, . . . ,Xi)′(X1, . . . ,Xi) = Li − Ui for i = 1, . . . , r, and let X−i = (X1, . . . ,Xi−1).

If r = 1, then L = Q and (15) is obvious. Suppose now that (15) holds for given model
X = X−i = (X1 · · ·Xi−1), i.e., Qi−1L

−1
i−1Qi−1 = Qi−1. By construction,

Li =

(
Li−1 0

X ′
iX−i X ′

iXi

)
and Ui =

(
Ui−1 X ′

−iXi

0 0

)
.

Now (15) holds for Li if and only if QiL
−1
i Ui = 0, or equivalently if and only if (X−i,Xi)L

−1
i Ui =

0. Using the formula for an invertible 2 × 2 lower triangular block diagonal matrix

(
A 0
B C

)−1

=

(
A−1 0

−C−1BA−1 C−1

)
, (31)

it is not hard to show that

(X−i,Xi)L
−1
i Ui =

(
(I − Pr)X−iL

−1
i−1Ui−1, −(I − Pr)X−iL

−1
i−1X

′
−iXr

)
. (32)

But X−iL
−1
i−1Ui−1 = X−iBi−1 = 0 by the induction hypothesis. Moreover, since by

the induction hypothesis L−1
i−1 is a generalized inverse of Qi−1, it is well known that

X−iL
−1
i−1X

′
−i = P1···(i−1) (e.g. Christensen 1996, Theorem B.44). Thus, using assump-

tion (20) and Lemma 1, the second component of the block matrix on the right of (32) is
zero, and the proof of the induction step is complete.

Proof of Theorem 5. Using the lower/upper triangular decomposition Qτ0 = Lτ0 − Uτ0

again, Bτ0 = L−1
τ0 Uτ0 . But Qzz is block diagonal by the assumptions on Z, M (τ ) and

Mr+1, so

Lτ0 =

(
Lxx,τ0 0
Qzx Qzz

)
and Uτ0 =

(
Uxx,τ0 −Qxz

0 0

)
.

Equation (24) is immediate using (31).

In part (b), limτ0→∞ L−1
xx,τ0 = 0 but limτ0→∞ Bxx,τ0 = Bxx,∞ exists. Equation (25)

follows immediately from (24).

Finally, for part (c), limτ0→0 Lxx,τ0 = M (τ ) and limτ0→0 Uxx,τ0 = 0, so limτ0→0 Bxx,τ0 =
0. Substituting these values in (24) gives the limit (26).
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Figure 1: BIB Design Example

Figure 2: Logistic Example

29


